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Introduction: 
      RNA interference (RNAi) is a conserved biological process in response to double-stranded 

RNA (dsRNA) 1. DsRNAs are processed into short interfering RNAs (siRNAs), about 22 

nucleotides in length, by the RNase enzyme Dicer. The siRNAs are then incorporated into a 

silencing complex called RISC (RNA-induced silencing complex), which identifies and silences 

complementary messenger RNAs. The most well characterized source of endogenous triggers 

for the RNAi machinery are the microRNA genes2,3. Numerous studies have demonstrated that, 

in animals, miRNAs are transcribed to generate long primary polyadenylylated RNAs (pri-

miRNAs)4,5. Through mechanisms not yet fully understood, the pri-microRNA is recognized and 

cleaved at a specific site by the nuclear Microprocessor complex6-10 to produce a ~70-90 

nucleotide microRNA precursor (pre-miRNA) which is exported to the cytoplasm 11,12. Only then 

is the pre-miRNA recognized by Dicer and cleaved to produce a mature microRNA. This 

probably involves recognition of the 2 nucleotide 3’ overhang created by Drosha to focus Dicer 

cleavage at a single site ~22 nucleotides from the end of the hairpin13. 

This process can be programmed experimentally in order to repress the expression of any 

chosen gene. We have constructed shRNA libraries (shRNA-mir) that uses our advanced 

understanding of miRNA biogenesis. ShRNA-mirs are modeled after endogenous miRNAs, 

specifically contained in the backbone of the primary miR-30 microRNA14. We have produced 

and sequence-verified more than 200,000 shRNAs covering almost all of the predicted genes in 

the mouse and human genomes15.  

 Large-scale screens of small interfering RNA (siRNA) and shRNA collections have 

generally adopted a one-by-one approach, interrogating phenotypes in a well-based format. 

This requires both considerable infrastructure and a substantial investment for each cell line to 

be screened. Alternatively, shRNA collections can be screened by assaying enrichment from 

pools, but this limits the range of phenotypes that can be addressed. Our focus is identifying 

essential genes or synthetically lethal genetic interactions through shRNAs that are selectively 

depleted from populations. This type of screen holds promise for the discovery of novel targets 

for cancer therapy and genetically validated combination therapies. We have linked a unique 60-

nuclotide DNA barcode to each shRNA vector to allow us to follow the fate of shRNAs in 

populations of virally transduced cells. If, for example, a particular shRNA provided resistance to 

a growth inhibitor stimulus, then the representation of its associated barcode should be 

increased after treatment. If a given shRNA sensitized a population to a specific stress, then the 

relative abundance of its barcode should diminish after the stress. This is measured by 

hybridizing genomic PCR products containing the barcodes to custom microarrays that contain 

the complement of these sequences. One can assess cellular response to different treatments 
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by comparing barcode representations of cell populations expressing known shRNA. The 

development of this highly efficient RNAi library together with the ability to screen pools of 

genes, provide us with the unique opportunity to investigate the entire genome. Previously, one 

such negative screen was reported; however, this tested only 500 shRNAs in a single pool 16. 

We therefore sought methods that allow multiplex analysis of phenotypic outputs on a genomic 

scale. In order to test whether such a screen can be done, we conducted a pilot screen 

identifying essential genes that were selectively depleted from populations using shRNAs in 

breast cancer cells.  

 

Velcade, the only proteasome targeted therapeutic approved by the FDA, is currently in 

Phase II clinical trials in breast cancer, though its molecular mechanism is highly disputed. We 

are examining the genes responsible for granting resistance and susceptibility to Velcade using 

our complex short hairpin RNAi library that results in the silencing of specific target genes. This 

technology will illustrate resistance to chemotherapy as a gain of barcode representation and 

increased susceptibility to chemotherapy as loss of barcode representation in a population of 

cells.  

 
Body:  

We therefore sought methods that allow multiplex analysis of phenotypic outputs on a 

genomic scale. In order to test whether such a screen can be done, we conducted a pilot screen 

identifying essential genes that were selectively depleted from populations using shRNAs in 

breast cancer cells.  

Pooled libraries drew from our previous collections wherein shRNAs are carried in a 

backbone derived from miR-3017. Combining RNA polymerase II promoters with miR-30–based 

shRNAs permits efficient suppression even with a single-copy integrant18,19. Target cell 

populations were infected such that each cell contained, on average, a single integrated virus, 

and each individual shRNA occupied 1000 cells. Three parallel infections generated biological 

replicate samples. Because our goal was to identify essential genes, genomic DNA was 

prepared from each replicate at three time points during a simple outgrowth assay. Each shRNA 

cassette contains two unique identifiers: the shRNA itself and a random 60-nucleotide barcode. 

Barcode sequences were determined for the human shRNA library, and custom, multiplex 

format microarrays were prepared that contained both barcode and half-hairpin (HH) probes 20. 

Proviral DNA fragments encompassing both shRNAs and barcodes were amplified from 

genomic DNA pools and hybridized to arrays in competition with a common reference.  
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We screened complex populations containing 6,000 (6K), 10,000 (10K) or 20,000 (20K) 

shRNAs. We began with a pooled analysis of 6000 (6K) shRNAs in MCF-10A and MDA-MB-

435. The 10K pool was introduced into MDA-MB-231, T-47D and ZR-75-1 breast cancer cell 

lines. The most complex pool (20K) was introduced into MCF-10A to allow direct comparison 

with previous screens of smaller complexity. In all cases, cell numbers were scaled to maintain a 

representation of 1000 cells per shRNA. The quality of each screen was similar, with high 

correlations between biological replicates. We assessed the consistency of the MCF-10A 

screens by comparing depleted gene sets for the 20K pools. FDR thresholds were the same for 

both data sets (q < 0.1), but the fold-change criterion was relaxed from 2-fold to 1.5-fold for the 

20K screen so that similar numbers of candidates were compared. A set of 172 genes (P = 

1.123 x 10–9) overlapped in both data sets, despite some differences in the protocols used to 

carry out each screen. This suggests that a pool of 20K shRNAs can be effectively screened.  

We established a rigorous data analysis pipeline for analyzing pooled shRNA screens. 

Correlations between biological replicates were high but diminished at later time points, whereas 

correlations between the reference channels remained unchanged.Overall, a gene was scored 

as a candidate if either its barcode or shRNA probe showed greater than 2-fold change with a 

false discovery rate (FDR) <10%.  

Viewing this portrait of shRNA sensitivity in more detail revealed a number of pathways 

and complexes that were differentially required in MCF-10A. These included epidermal growth 

factor receptor (EGFR), an effect that could be reproduced pharmacologically using the EGFR 

inhibitor Tarceva 21. DNA methyltransferases also scored either above or close to the threshold. 

In accord with these results, MCF-10A cells showed a more than 50-fold greater sensitivity to 5-

aza-deoxycytidine, a methyltransferase suicide substrate 22, than the other cell lines. As a final 

example, numerous proteasome subunits were preferentially depleted from MCF-10A. These 

cells showed the greatest sensitivity to a proteasome inhibitor, MG-13223. Interestingly, MDA-

MB-435 showed an intermediate level of sensitivity to the drug, and this was reflected precisely 

in their intermediate level of depletion of proteasomal shRNAs during the screen.  

We have validated a highly scalable approach for screening shRNA libraries. Although 

we used a phenotypic filter reflecting growth and survival, virtually any characteristic that allows 

separation of phenotypically distinct cells can be applied. We also validated the ability of 

functional shRNA screening to separate cell lines based on their genetic vulnerabilities in a 

manner that reflects their already defined characteristics (e.g., immortal versus tumor, basal 
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versus luminal). Although one could attribute selective dependency to culture conditions in some 

cases, the overwhelming concordance of the shRNAs that affect proliferation and survival across 

these lines, many of which are cultured identically, strongly argues against this being a 

pervasive explanation. In all, this approach enables genome-wide screens for tumor-specific 

vulnerabilities to be carried out on large numbers of tumor lines. Moreover, it permits rational 

searches for lesions that synergize with existing therapeutics to produce a path toward 

genetically informed combination therapies. This pilot screen has allowed us to develop the 

tools necessary to conduct large-scale negative selection screens using a shRNA library with up 

to 20,000 hairpins. In addition, we have developed a highly microarray platform with the 

accompanying statistical methods for analysis. This microarray platform and statistical analysis 

is currently being applied to our Velcade screen that was conducted in MDA-MB-231 breast 

cancer cells.  

Key Research Accomplishments: 

• A RNAi screen identifying genes that are important for the proliferation and survival of five 

cell lines derived from human mammary tissue. 

• These studies establish a practical platform for genome-scale screening of complex 

phenotypes in mammalian cells and demonstrate that RNAi can be used to expose 

genotype-specific sensitivities. 

 

Reportable Outcomes: 
Publications: 

Silva JM, Marran K, Parker JS, Silva J Golding M, Schlabach MR, Elledge SJ, Hannon GJ, 
Chang K. Profiling essential genes in human mammary cells by multiplex RNAi screening. 
Science. 2008 Feb 1;319(5863):617-20.  
 
Conclusions: 
We have validated a highly scalable approach for screening shRNA libraries in breast cancer cells. 

We can conduct screens with up to 20,000 hps and identify depleted genes from a complex 

population. Our pilot screen identified genes that are important for the proliferation and survival of 

five cell lines derived from human mammary tissue. We will use these microarray and statistical 

tools for to study genes that modify sensitivity to the proteasome inhibitor, Velcade. This screen 

was conducted in MDAMB231 breast cancer cells at two different dosages allowing us to detect 

genes that will enhance sensitivity or increase resistance to Velcade. We have developed our 

microarray platform and analysis methods to allow us to detect viable candidates. These 

candidates will then be validated in vitro and in vivo. 

 
 



 
 

 8  
   

References: 
1. Hannon, G.J. RNA interference. Nature 418, 244-51. (2002). 

2. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-97 

(2004). 

3. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev 

Genet 5, 522-31 (2004). 

4. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J 23, 4051-60 

(2004). 

5. Cai, X., Hagedorn, C.H. & Cullen, B.R. Human microRNAs are processed from capped, 

polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957-66 (2004). 

6. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-9 

(2003). 

7. Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary 

microRNAs by the Microprocessor complex. Nature 432, 231-5 (2004). 

8. Landthaler, M., Yalcin, A. & Tuschl, T. The Human DiGeorge Syndrome Critical Region Gene 

8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis. Curr Biol 14, 2162-7 

(2004). 

9. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18, 

3016-27 (2004). 

10. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. 

Nature 432, 235-40 (2004). 

11. Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-

microRNAs and short hairpin RNAs. Genes Dev 17, 3011-6 (2003). 21 

12. Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA 

precursors. Science 303, 95-8 (2004). 

13. Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23, 227-31 

(2005). 

14. Zeng, Y., Wagner, E.J., Cullen, B.R. 2002. Both natural and designed micro RNAs can 

inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–

1333. 

15. Silva, J.M., et al 2005. Second-generation shRNA libraries covering the mouse and human 

genomes. Nature Genetics 37, 1281 – 1288. 

16. V. N. Ngo et al., Nature 441, 106 (2006). 

17.  J. M. Silva et al., Nat. Genet. 37, 1281 (2005). 

18. R. A. Dickins et al., Nat. Genet. 37, 1289 (2005).  



 
 

 9  
   

19. F. Stegmeier, G. Hu, R. J. Rickles, G. J. Hannon, S. J. Elledge, Proc. Natl. Acad. Sci. U.S.A. 

102, 13212 (2005). 

20.  M. R. Schlabach et al., Science 319, 620 (2008). 

21. J. D. Moyer et al., Cancer Res. 57, 4838 (1997). 

22.  L. Jackson-Grusby et al., Proc. Natl. Acad. Sci. U.S.A. 94, 4681  

23.  V. J. Palombella et al., Cell 78, 773 (1994). 
 


